QUIZ 4: LESSONS 4-5

AUGUST 31, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. [5 pts] Evaluate $\int_{e}^{e^{2}} \frac{4}{x \ln x} d x$.

Solution: This is a u-substitution problem. Let $u=\ln x, d u=\frac{1}{x} d x \Rightarrow$ $x d u=d x$. We do have bounds, which means we need to convert:

$$
u(e)=\ln e=1 \quad \text { and } \quad u\left(e^{2}\right)=\ln e^{2}=2 .
$$

Thus, we write

$$
\begin{aligned}
\int_{e}^{e^{2}} \frac{4}{x \ln x} d x & =\int_{1}^{2} \frac{4}{x u}(x d u) \\
& =\int_{1}^{2} \frac{4}{u} d u \\
& =\left.4 \ln u\right|_{1} ^{2} \\
& =4 \ln 2-4 \underbrace{\ln 1}_{0} \\
& =4 \ln 2
\end{aligned}
$$

2. [5 pts] Evaluate $\int_{e}^{e^{2}} 4 x \ln x d x$.

Solution: This is an integration by parts problem. By LIATE, let $u=\ln x$ and so $d v=4 x d x$. Our table is

$$
\begin{array}{rl}
u=\ln x & d v=4 x d x \\
d u=\frac{1}{x} d x & v=2 x^{2}
\end{array}
$$

Our integral becomes

$$
\begin{aligned}
\int_{e}^{e^{2}} 4 x \ln x d x & =\left.\underbrace{\ln x}_{u} \underbrace{\left(2 x^{2}\right)}_{v}\right|_{e} ^{e^{2}}-\int_{e}^{e^{2}} \underbrace{2 x^{2}}_{v} \underbrace{\left(\frac{1}{x} d x\right)}_{d u} \\
& =\left.2 x^{2} \ln x\right|_{e} ^{e^{2}}-\int_{e}^{e^{2}} 2 x d x \\
& =\left.2 x^{2} \ln x\right|_{e} ^{e^{2}}-\left.x^{2}\right|_{e} ^{e^{2}} \\
& =2 x^{2} \ln x-\left.x^{2}\right|_{e} ^{e^{2}} \\
& =2\left(e^{2}\right)^{2} \underbrace{\ln e^{2}}_{2}-\left(e^{2}\right)^{2}-[2(e)^{2} \underbrace{\ln e}_{1}-(e)^{2}] \\
& =4 e^{4}-e^{4}-\left[2 e^{2}-e^{2}\right] \\
& =3 e^{4}-e^{2}
\end{aligned}
$$

